The requirement of specific membrane domains for Raf-1 phosphorylation and activation.
نویسندگان
چکیده
Activation of Raf-1 by Ras requires recruitment to the membrane as well as additional phosphorylations, including phosphorylation at serine 338 (Ser-338) and tyrosine 341 (Tyr-341). In this study we show that Tyr-341 participates in the recruitment of Raf-1 to specialized membrane domains called "rafts," which are required for Raf-1 to be phosphorylated on Ser-338. Raf-1 is also thought to be recruited to the small G protein Rap1 upon GTP loading of Rap1. However, this does not result in Raf-1 activation. We propose that this is because Raf-1 is not phosphorylated on Tyr-341 upon recruitment to Rap1. Redirecting Rap1 to Ras-containing membranes or mimicking Tyr-341 phosphorylation of Raf-1 by mutation converts Rap1 into an activator of Raf-1. In contrast to Raf-1, B-Raf is activated by Rap1. We suggest that this is because B-Raf activation is independent of tyrosine phosphorylation. Moreover, mutants that render B-Raf dependent on tyrosine phosphorylation are no longer activated by Rap1.
منابع مشابه
Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation.
The Raf family of serine/threonine protein kinases couple growth factor receptor stimulation to mitogen activated protein kinase activation, but their own regulation is poorly understood. Using phospho-specific antisera, we show that activated Raf-1 is phosphorylated on S338 and Y341. Expression of Raf-1 with oncogenic Ras gives predominantly S338 phosphorylation, whereas activated Src gives pr...
متن کاملPositive regulation of A-RAF by phosphorylation of isoform-specific hinge segment and identification of novel phosphorylation sites.
In mammals the RAF family of serine/threonine kinases consists of three members, A-, B-, and C-RAF. Activation of RAF kinases involves a complex series of phosphorylations. Although the most prominent phosphorylation sites of B- and C-RAF are well characterized, little is known about regulatory phosphorylation of A-RAF. Using mass spectrometry, we identified here a number of novel in vivo phosp...
متن کاملActivation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro.
The c-Raf-1 protein kinase plays a critical role in intracellular signaling downstream from many tyrosine kinase and G-protein-linked receptors. c-Raf-1 binds to the proto-oncogene Ras in a GTP-dependent manner, but the exact mechanism of activation of c-Raf-1 by Ras is still unclear. We have established a system to study the activation of c-Raf-1 in vitro. This involves mixing membranes from c...
متن کاملTaxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway.
c-Raf-1 (Raf-1) is a central component of signal transduction pathways stimulated by various growth factors, protein kinase C, and other protein kinases. Raf-1 activation is thought to be initiated at the plasma membrane after its recruitment by Ras. Raf-1 activation is associated primarily with proliferation and cell survival, but it has also been implicated in apoptosis. Raf-1 has also been s...
متن کاملActivity of plasma membrane-recruited Raf-1 is regulated by Ras via the Raf zinc finger.
Ras recruits Raf to the plasma membrane for activation by a combination of tyrosine phosphorylation and other as yet undefined mechanism(s). We show here that the Raf zinc finger is not required for plasma membrane recruitment of Raf by Ras but is essential for full activation of Raf at the plasma membrane. Membrane targeting cannot compensate for the absence of the zinc finger. One facet of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 5 شماره
صفحات -
تاریخ انتشار 2003